Ordinal regression neural networks based on concentric hyperspheres

نویسندگان

  • Pedro Antonio Gutiérrez
  • Peter Tiño
  • César Hervás-Martínez
چکیده

Threshold models are one of the most common approaches for ordinal regression, based on projecting patterns to the real line and dividing this real line in consecutive intervals, one interval for each class. However, finding such one-dimensional projection can be too harsh an imposition for some datasets. This paper proposes a multidimensional latent space representation with the purpose of relaxing this projection, where the different classes are arranged based on concentric hyperspheres, each class containing the previous classes in the ordinal scale. The proposal is implemented through a neural network model, each dimension being a linear combination of a common set of basis functions. The model is compared to a nominal neural network, a neural network based on the proportional odds model and to other state-of-the-art ordinal regression methods for a total of 12 datasets. The proposed latent space shows an improvement on the two performance metrics considered, and the model based on the three-dimensional latent space obtains competitive performance when compared to the other methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An approach for construction of Boolean neural networks based on geometrical expansion

We propose a fast covering learning algorithm (FCLA) for construction of Boolean neural networks. We visualize a neuron in terms of a hypersphere. To expand this hypersphere, we introduce three di0erent radii. The construction process makes use of three concentric hyperspheres based on these radii, and is illustrated using an example. FCLA results in a simple neural network; further the resulti...

متن کامل

Ordinal regression based on learning vector quantization

Recently, ordinal regression, which predicts categories of ordinal scale, has received considerable attention. In this paper, we propose a new approach to solve ordinal regression problems within the learning vector quantization framework. It extends the previous approach termed ordinal generalized matrix learning vector quantization with a more suitable and natural cost function, leading to mo...

متن کامل

An Approach of Artificial Neural Networks Modeling Based on Fuzzy Regression for Forecasting Purposes

In this paper, a new approach of modeling for Artificial Neural Networks (ANNs) models based on the concepts of fuzzy regression is proposed. For this purpose, we reformulated ANN model as a fuzzy nonlinear regression model while it has advantages of both fuzzy regression and ANN models. Hence, it can be applied to uncertain, ambiguous, or complex environments due to its flexibility for forecas...

متن کامل

Deep Ordinal Regression Based on Data Relationship for Small Datasets

Ordinal regression aims to classify instances into ordinal categories. As with other supervised learning problems, learning an effective deep ordinal model from a small dataset is challenging. This paper proposes a new approach which transforms the ordinal regression problem to binary classification problems and uses triplets with instances from different categories to train deep neural network...

متن کامل

Genetic Implementation of a Classifier Based on Data Separation by means of Hyperspheres

This paper discusses a genetic implementation of the growing hyperspheres classifier (GHS) for highdimensional data classification. The main idea of the GHS classifier consists in data separation by n-dimensional hyperspheres properly spread over the training data. First, the idea of training data representation is described. Then a brief description of a previous first representation by neural...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2014